Technical Comparison: MCP vs A2A Protocol

Deep dive into architecture, implementation details, and code examples for both AI communication protocols

Protocol Architecture

Understanding the architectural differences between MCP and A2A helps developers implement the right solution for their needs.

MCP

Model Context Protocol Architecture

MCP is designed as a structured format for passing rich context to language models. Its architecture follows a hierarchical structure with clearly defined components:

Core Components

  • Context Objects: Structured containers for different types of contextual information
  • Context Types: Predefined categories like chat history, documents, user preferences, etc.
  • Metadata Layer: Information about the context itself (source, importance, timestamp)
  • Reference System: For linking related context elements together

MCP Data Flow Architecture

┌─────────────────┐    ┌─────────────────┐    ┌─────────────────┐
│                 │    │    MCP Layer    │    │                 │
│   Application   │───▶│  Context Assembly │───▶│    LLM Model    │
│                 │    │ & Standardization │    │                 │
└─────────────────┘    └─────────────────┘    └─────────────────┘
        │                                              │
        │                                              │
        ▼                                              ▼
┌─────────────────┐                          ┌─────────────────┐
│     Raw Data    │                          │   Model Output  │
│    Sources      │                          │                 │
└─────────────────┘                          └─────────────────┘
                

Design Principles

  1. Modularity: Context objects can be composed and reused across different requests
  2. Efficient Token Usage: Structured to minimize token consumption while maximizing information density
  3. Explicit Metadata: Clear separation between actual content and information about the content
  4. Interoperability: Designed to work across different LLM providers

Key Architectural Insight

MCP approaches the problem from a context quality perspective, focusing on how to structure and enrich the information sent to models in a standardized way. This is fundamentally different from A2A's focus on agent communication channels.

A2A

Agent-to-Agent Protocol Architecture

A2A protocol is designed as a communication framework enabling different AI agents to interact, discover capabilities, and collaborate on tasks. Its architecture resembles distributed systems protocols:

Core Components

  • Agent Registry: Discovery mechanism for finding available agents and capabilities
  • Message Format: Standardized structure for requests, responses, and notifications
  • Capability Description: Formalized way to express what functions an agent can perform
  • Task Coordination: Protocols for delegating, tracking, and synchronizing multi-agent tasks

A2A Communication Architecture

┌─────────────────┐    ┌─────────────────┐    ┌─────────────────┐
│                 │    │                 │    │                 │
│    Agent A      │◀──▶│  A2A Protocol   │◀──▶│    Agent B      │
│                 │    │  Message Layer  │    │                 │
└─────────────────┘    └─────────────────┘    └─────────────────┘
        ▲                      │                      ▲
        │                      ▼                      │
        │             ┌─────────────────┐             │
        │             │Agent Discovery &│             │
        └─────────────│  Registry       │─────────────┘
                      └─────────────────┘
                               │
                               ▼
                      ┌─────────────────┐
                      │  Task Execution │
                      │  & Coordination │
                      └─────────────────┘
                

Design Principles

  1. Service-Oriented: Treats agents as independent services with published interfaces
  2. Task Decomposition: Supports breaking complex tasks into subtasks assigned to specialized agents
  3. Asynchronous Communication: Allows non-blocking, event-driven interactions between agents
  4. Federation: Enables coordination across organizational boundaries

Key Architectural Insight

A2A approaches the problem from a service coordination perspective, focusing on how independent AI services can discover and interact with each other. This resembles microservice architectures more than traditional model input optimization.

Implementation Details

How these protocols are implemented in practice, including technical specifications and frameworks.

Implementation Aspect MCP (Model Context Protocol) A2A (Agent-to-Agent)
Primary Format JSON-based structure with defined schema JSON-based messaging with RPC-like conventions
Transport Layer Typically HTTP/REST with API providers HTTP, WebSockets, or message queues
State Management Mostly stateless, context embedded in requests Can maintain conversation state across interactions
Authentication Provider API keys, typically simpler More complex, may involve OAuth, API keys, or custom tokens
Error Handling Basic error codes and descriptions Rich error taxonomy, retry mechanisms, fallback strategies
Development Tools Emerging SDKs, minimal current tooling More comprehensive framework support planned
Schema Validation JSON Schema definitions Both JSON Schema and runtime capability checking

Implementation Challenges

Both protocols are in early stages of development and face adoption challenges:

  • MCP: Requires buy-in from major LLM providers to standardize context handling
  • A2A: More complex to implement, requiring coordination across different agent developers
  • Both: Need developer tooling and framework support to gain traction

Code Examples

Practical examples showing how to implement each protocol in real-world applications.

MCP

MCP Implementation Example

Here's a simplified example of using MCP to structure context for an LLM call:

// JavaScript/TypeScript Example
import { MCPClient } from 'mcp-client';

async function queryWithContext() {
  const mcpClient = new MCPClient({
    apiKey: 'your-llm-api-key'
  });
  
  // Create an MCP context object
  const context = {
    metadata: {
      version: '1.0',
      application: 'travel-assistant',
      session: 'user-123-session-456'
    },
    documents: [
      {
        id: 'doc-1',
        type: 'flight-info',
        content: 'Flight AA123 departs at 10:30 AM on June 15th',
        metadata: {
          source: 'airline-database',
          timestamp: '2023-06-10T14:30:00Z',
          relevance: 0.95
        }
      }
    ],
    conversation: {
      messages: [
        {
          role: 'user',
          content: 'I need to book a flight to New York next week.',
          timestamp: '2023-06-10T14:25:00Z'
        },
        {
          role: 'assistant',
          content: 'I found several options. When exactly do you want to travel?',
          timestamp: '2023-06-10T14:26:00Z'
        },
        {
          role: 'user',
          content: 'I need to be there by Tuesday afternoon.',
          timestamp: '2023-06-10T14:27:00Z'
        }
      ]
    },
    preferences: {
      user: {
        id: 'user-123',
        travelPreferences: {
          seatType: 'window',
          airlinePreference: ['Delta', 'American'],
          maxConnections: 1
        }
      }
    }
  };
  
  // Send query with structured context
  const response = await mcpClient.query({
    model: 'gpt-4',
    prompt: 'Find the best flight option for this user',
    context: context
  });
  
  return response;
}

MCP Schema Definition Example

// Example MCP JSON Schema (simplified)
{
  "$schema": "http://json-schema.org/draft-07/schema#",
  "title": "Model Context Protocol Schema",
  "type": "object",
  "required": ["metadata"],
  "properties": {
    "metadata": {
      "type": "object",
      "required": ["version"],
      "properties": {
        "version": { "type": "string" },
        "application": { "type": "string" },
        "session": { "type": "string" }
      }
    },
    "documents": {
      "type": "array",
      "items": {
        "type": "object",
        "required": ["id", "content"],
        "properties": {
          "id": { "type": "string" },
          "type": { "type": "string" },
          "content": { "type": "string" },
          "metadata": { "type": "object" }
        }
      }
    },
    "conversation": {
      "type": "object",
      "properties": {
        "messages": {
          "type": "array",
          "items": {
            "type": "object",
            "required": ["role", "content"],
            "properties": {
              "role": { "type": "string", "enum": ["user", "assistant", "system"] },
              "content": { "type": "string" },
              "timestamp": { "type": "string", "format": "date-time" }
            }
          }
        }
      }
    },
    "preferences": { "type": "object" }
  }
}
A2A

A2A Implementation Example

Here's a simplified example of implementing A2A protocol for agent communication:

// JavaScript/TypeScript Example
import { A2AAgent, CapabilityRegistry } from 'a2a-framework';

// Define an A2A-compliant Travel Planning Agent
class TravelPlannerAgent extends A2AAgent {
  constructor() {
    super({
      agentId: 'travel-planner-agent-001',
      name: 'Travel Planning Assistant',
      description: 'Can help plan travel itineraries and book flights/hotels',
      version: '1.0.0',
      capabilities: [
        {
          id: 'plan-itinerary',
          name: 'Plan Travel Itinerary',
          description: 'Creates a complete travel plan based on user preferences',
          parameters: {
            type: 'object',
            required: ['destination', 'startDate', 'endDate'],
            properties: {
              destination: { type: 'string' },
              startDate: { type: 'string', format: 'date' },
              endDate: { type: 'string', format: 'date' },
              budget: { type: 'number' },
              preferences: { type: 'object' }
            }
          },
          returns: {
            type: 'object',
            properties: {
              itinerary: { type: 'array' },
              totalCost: { type: 'number' }
            }
          }
        }
      ]
    });
    
    // Register capability handlers
    this.registerCapabilityHandler('plan-itinerary', this.planItinerary.bind(this));
    
    // Register with discovery service
    CapabilityRegistry.register(this);
  }
  
  // Implementation of capability
  async planItinerary(params) {
    // Check if we need help from other specialized agents
    const flightAgent = await CapabilityRegistry.findAgent('flight-booking');
    const hotelAgent = await CapabilityRegistry.findAgent('hotel-booking');
    
    // Send A2A requests to other agents
    const flightResult = await this.sendA2ARequest(flightAgent.agentId, 'search-flights', {
      origin: 'user-home-location', // determined from context
      destination: params.destination,
      departDate: params.startDate,
      returnDate: params.endDate,
      budget: params.budget * 0.4 // allocate 40% of budget to flights
    });
    
    const hotelResult = await this.sendA2ARequest(hotelAgent.agentId, 'search-hotels', {
      location: params.destination,
      checkIn: params.startDate,
      checkOut: params.endDate,
      budget: params.budget * 0.4 // allocate 40% of budget to accommodation
    });
    
    // Combine results and create itinerary
    const itinerary = this.createItinerary(flightResult, hotelResult, params);
    
    return {
      itinerary: itinerary,
      totalCost: flightResult.price + hotelResult.price
    };
  }
  
  // Helper methods...
  createItinerary(flights, hotels, params) {
    // Complex logic to create optimal itinerary
    return [/* itinerary items */];
  }
}

A2A Message Format Example

// Example A2A Message (Request)
{
  "messageType": "request",
  "messageId": "msg-12345",
  "timestamp": "2023-06-15T09:30:00Z",
  "source": {
    "agentId": "travel-planner-agent-001",
    "name": "Travel Planning Assistant"
  },
  "target": {
    "agentId": "flight-booking-agent-002",
    "capability": "search-flights"
  },
  "payload": {
    "origin": "SFO",
    "destination": "JFK",
    "departDate": "2023-07-01",
    "returnDate": "2023-07-08",
    "budget": 600,
    "preferences": {
      "seatClass": "economy",
      "directOnly": true
    }
  },
  "metadata": {
    "priority": "normal",
    "sessionId": "user-session-789",
    "timeout": 30000
  }
}

// Example A2A Message (Response)
{
  "messageType": "response",
  "messageId": "resp-67890",
  "inResponseTo": "msg-12345",
  "timestamp": "2023-06-15T09:30:05Z",
  "source": {
    "agentId": "flight-booking-agent-002",
    "name": "Flight Booking Service"
  },
  "target": {
    "agentId": "travel-planner-agent-001"
  },
  "status": "success",
  "payload": {
    "flights": [
      {
        "airline": "Delta",
        "flightNumber": "DL123",
        "departureTime": "2023-07-01T08:30:00Z",
        "arrivalTime": "2023-07-01T11:45:00Z",
        "price": 450
      }
    ],
    "price": 450,
    "currency": "USD"
  },
  "metadata": {
    "dataSource": "global-flight-database",
    "resultCount": 1,
    "filteredFrom": 24
  }
}

Converting MCP Services to A2A

Technical implementation of an adapter pattern to bridge MCP-based services into the A2A ecosystem.

MCP to A2A Adapter Implementation

The following code example demonstrates how to create an adapter that wraps an MCP-based service and exposes it as an A2A-compliant agent:

// JavaScript/TypeScript Example of MCP-to-A2A Adapter
import { A2AAgent, CapabilityRegistry } from 'a2a-framework';
import { MCPClient } from 'mcp-client';

class MCPtoA2AAdapter extends A2AAgent {
  constructor(mcpConfig) {
    super({
      agentId: 'mcp-adapter-001',
      name: 'MCP Service Adapter',
      description: 'Exposes MCP-based LLM services as A2A capabilities',
      version: '1.0.0',
      capabilities: [
        {
          id: 'answer-question',
          name: 'Answer Questions with LLM',
          description: 'Answers questions using an LLM with MCP context',
          parameters: {
            type: 'object',
            required: ['question'],
            properties: {
              question: { type: 'string' },
              contextDocuments: { 
                type: 'array',
                items: { type: 'object' }
              },
              conversationHistory: {
                type: 'array',
                items: { type: 'object' }
              }
            }
          },
          returns: {
            type: 'object',
            properties: {
              answer: { type: 'string' },
              confidence: { type: 'number' }
            }
          }
        }
      ]
    });
    
    // Initialize MCP client
    this.mcpClient = new MCPClient(mcpConfig);
    
    // Register capability handlers
    this.registerCapabilityHandler('answer-question', this.answerQuestionWithMCP.bind(this));
    
    // Register with A2A discovery service
    CapabilityRegistry.register(this);
  }
  
  // Adapter method that translates between A2A and MCP
  async answerQuestionWithMCP(params) {
    // Convert A2A parameters to MCP context format
    const mcpContext = {
      metadata: {
        version: '1.0',
        application: 'a2a-mcp-adapter',
        session: params.metadata?.sessionId || 'unknown-session'
      },
      // Convert A2A context documents to MCP format
      documents: params.contextDocuments?.map(doc => ({
        id: doc.id || `doc-${Math.random().toString(36).substring(2, 9)}`,
        type: doc.type || 'text',
        content: doc.content,
        metadata: doc.metadata || {}
      })) || [],
      // Convert A2A conversation history to MCP format
      conversation: {
        messages: params.conversationHistory?.map(msg => ({
          role: msg.role,
          content: msg.content,
          timestamp: msg.timestamp
        })) || []
      }
    };
    
    // Call MCP service with converted context
    const mcpResponse = await this.mcpClient.query({
      model: 'gpt-4', // Can be configurable
      prompt: params.question,
      context: mcpContext
    });
    
    // Convert MCP response back to A2A format
    return {
      answer: mcpResponse.text,
      confidence: mcpResponse.metadata?.confidence || 0.8,
      sourceDocuments: mcpResponse.metadata?.sourceDocuments || []
    };
  }
}

// Usage example
const adapter = new MCPtoA2AAdapter({
  apiKey: process.env.MCP_API_KEY,
  endpoint: 'https://api.mcp-service.com/v1'
});

// The adapter now appears as an A2A agent in the ecosystem
// that other A2A agents can discover and communicate with

Key Implementation Considerations

  • Context Translation: The core challenge is mapping between A2A message formats and MCP context structures
  • Capability Exposure: The adapter must accurately represent what the underlying MCP service can do
  • State Management: A2A may expect longer-lived interactions than typical MCP services provide
  • Error Handling: The adapter needs to translate between different error paradigms
  • Authentication Bridging: Managing credentials and permissions across system boundaries