Real-world scenarios and implementation examples to help you make the right protocol choice for your AI application
Examining protocol choices for building an enterprise document assistant that processes company information
Building an AI system to query and process corporate knowledge bases
A large corporation needs to build an internal AI assistant that can answer employee questions by retrieving information from multiple document repositories, including HR policies, technical documentation, and project wikis.
Primary Choice: MCP is ideal for this scenario because it focuses on structured context management when querying large language models.
The system would use MCP to:
┌─────────────────┐ 1. Query ┌─────────────────┐ │ │──────────▶ │ │ │ Employee │ │ RAG Processor │ │ │◀────────── │ │ └─────────────────┘ 5. Answer └─────────────────┘ │ 2. Retrieve Documents ▼ ┌─────────────────┐ │ Document │ │ Repositories │ └─────────────────┘ │ 3. Structure with MCP ▼ ┌─────────────────┐ │ LLM Service │ │ (with MCP) │ └─────────────────┘ │ │ 4. Response ▼
Analyzing how to build a personal AI assistant that coordinates across multiple services
Creating an AI system that coordinates tasks across multiple domains and services
A user wants a personal AI assistant that can coordinate complex tasks involving multiple services, such as planning a trip that requires flight booking, hotel reservations, creating an itinerary, and scheduling meetings with local contacts.
Primary Choice: A2A is ideal for this scenario because it enables coordination between specialized agents, each handling different aspects of the task.
The system would use A2A to:
┌─────────────────┐ ┌─────────────────┐ │ │ 1. Request │ │ │ User │──────────▶ │ Primary Personal│ │ │◀────────── │ Assistant │ └─────────────────┘ 8. Results └─────────────────┘ │ ▲ ▲ │ │ │ ┌─────────────┼────┼────┘ │ │ │ ▼ ▼ │ ┌─────────────────┐ ┌─────────────────┐ │ │ │ │ │ Flight Booking │ │ Hotel Booking │ │ Agent (A2A) │ │ Agent (A2A) │ └─────────────────┘ └─────────────────┘ │ │ ▼ ▼ ┌─────────────────┐ ┌─────────────────┐ │ Airline APIs │ │ Hotel APIs │ └─────────────────┘ └─────────────────┘
Building an AI system that manages multiple smart devices while maintaining context
Creating an AI system that coordinates across multiple smart devices while understanding user context
A smart home system needs to coordinate multiple devices (lights, thermostat, entertainment system, security) while understanding complex user requests and maintaining awareness of household preferences and patterns.
Primary Choice: This scenario benefits from combining both protocols - A2A for device coordination and MCP for contextual understanding.
The system would use:
┌─────────────────┐ ┌─────────────────┐ │ │ Request │ Central Hub │ │ Homeowner │──────────▶ │ (Uses MCP │ │ │◀────────── │ for context) │ └─────────────────┘ Response └─────────────────┘ │ │ │ A2A │ │ │ A2A Protocol │ │ │ Protocol ▼ ▼ ▼ ┌─────────────┐ ┌─────────────┐ ┌─────────────┐ │ Lighting │ │ Temperature │ │ Security │ │ Agent │ │ Agent │ │ Agent │ └─────────────┘ └─────────────┘ └─────────────┘ │ │ │ ▼ ▼ ▼ ┌─────────────┐ ┌─────────────┐ ┌─────────────┐ │ Smart │ │ Smart │ │ Security │ │ Lights │ │ Thermostat │ │ System │ └─────────────┘ └─────────────┘ └─────────────┘
Is your primary need coordinating multiple specialized AI services? │ ┌─────────────┴─────────────┐ │ │ ▼ ▼ YES NO │ │ │ │ ▼ ▼ Are these services independently Is your focus on optimizing developed or maintained? how a single system processes │ complex context information? ┌───────────┴───────────┐ │ │ │ ┌───────┴───────┐ ▼ ▼ │ │ YES NO ▼ ▼ │ │ YES NO │ │ │ │ ▼ ▼ ▼ ▼ Strongly Consider Strongly Consider a Consider A2A A2A with Consider MCP custom solution internal coordination
As both protocols continue to evolve, the most forward-thinking approach is to design systems with protocol flexibility in mind. Consider implementing adapters or abstraction layers that could accommodate either protocol as standards mature.
For enterprise applications starting today, MCP offers immediate benefits with less coordination complexity, while A2A represents the future direction of AI service ecosystems as they become more distributed and specialized.